Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 92: 106251, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36462467

ABSTRACT

Herbicides are used constantly in agriculture to enhance productivity across the globe. This herbicide monitoring requires utmost importance since its high dose leads to ecological imbalance and a negative impact on the environment. Moreover, a quantification of toxic herbicide is one of the important problems in the food analysis. In this work, deals with the development of a simple, and facile one-pot sonochemical synthesis of strontium doped La2S3 (Sr@La2S3). Morphological and structural characterization confirms the doping of Sr@La2S3 to generate a hierarchical layered structure. The electrochemical performance of modified with rotating disk electrode (RDE) using Sr@La2S3 composite is high, compared to La2S3 and bare electrodes towards the quantitative detection of mesotrione (MTO) in phosphate buffer. Sr@La2S3/RDE showed good sensitivity for MTO detection and it exhibit a range of 0.01-307.01 µM and limit of detection of 2.4 nM. Besides, the selectivity of fabricated electrode is high as it can electrochemically reduce MTO particularly, even in the presence of other chemicals, biological molecules and inorganic ions. The repeatability of MTO detection is high even after 30 days with a lower RSD values. Hence, simple fabrication of Sr@La2S3/RDE could be a novel electrode for the sensitive, selective, and reproducible determination of herbicides in real-time applications.


Subject(s)
Environmental Pollutants , Herbicides , Electrochemical Techniques , Electrodes , Environmental Pollutants/analysis , Herbicides/analysis , Lanthanum/chemistry , Food Contamination , Water Pollutants/analysis
2.
Mikrochim Acta ; 188(9): 313, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34458931

ABSTRACT

Environmental sustainability is threatened by the widespread exploitation and unfettered release of chemical pollutants that require immediate detection and eradication. An instantaneous quantification technique is essential to understand the physiological roles of the antibacterial drug sulfaguanidine (SGN) in biological systems. The present work features the green and environmentally benign synthesis of rare earth metal sulfide nanorods incorporated carbon nitrides sheets (Ce2S3@CNS) by deep eutectic solvent-based fabrication with remarkable electrochemical properties. The morphological and structural analyses of the prepared electrocatalyst were characterized using various techniques including SEM, XRD, XPS, and EIS. The heterojunction of regimented structures bids synergistic quantum confinement effects and refines charge carriers endorsing enormous active sites. Furthermore, the obtained Ce2S3@CNS/GCE possess an exceedingly lower limit of detection (0.0053 µM) and high sensitivity of 8.685 µA·µM-1·cm-2 with superior electrocatalytic action and virtuous stability for the detection of SGN. This modified electrode could afford linearity in the range 0.01-1131.5 µM measured at 0.95 V (vs. Ag/AgCl) correlated to the concentration of SGN. Examining the real samples with this advanced electrocatalyst would support its hands-on applications in everyday life. Development of such innovative architectures with fewer energy necessities and nominal by-products scripts the superiority in characteristic synthetic methodology following the guidelines of green chemistry.

3.
Ultrason Sonochem ; 64: 105007, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32092696

ABSTRACT

Binary metal oxides (La2O3@SnO2) decorated reduced graphene oxide nanocomposite was synthesized by ultrasound process in an environmentally benign solvent with a working frequency of 25 and 40 kHz (6.5 l200 H, Dakshin, India and maximum input power 210 W). Further, to enhance the electrocatalytic activity, the reduced graphene oxide (rGO) was prepared from graphene oxide by ultrasonication method. As prepared La2O3@SnO2/rGO was scrutinized using XRD, TEM, EDX and quantitative test for the structural and morphology properties. As modified La2O3@SnO2/rGO nanocomposite exhibits better electrochemical activity towards the oxidation of methyl nicotinate with higher anodic current compared to other modified and unmodified electrode for the detection of methyl nicotinate with larger linear range (0.035-522.9 µM) and lower limit of detection (0.0197 µM). In addition, the practical feasibility of the sensor was inspected with biological samples, reveals the acceptable recovery of the sensor in real samples.

4.
J Biotechnol ; 215: 20-6, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-25941156

ABSTRACT

Biomass composition of Chlamydomonas reinhardtii was studied during two consecutive cycles of 12h light/12h dark. As in our experimental conditions the two synchronized divisions were separated by 20h, it was possible to show that accumulation of dry weight, proteins, chlorophyll and fatty acids mainly depends on cell division, whereas starch accumulation depends on a circadian rhythm as reported previously. Our metabolomics analyses also revealed that accumulation of five (Ser, Val, Leu, Ile and Thr) of the nine free amino acids detected displayed rhythmicity, depending on cell division while Glu was 20-50 times more abundant than the other ones probably because this free amino acid serves not only for protein synthesis but also for biosynthesis of nitrogen compounds. In addition, we performed a thermodynamic-motivated theoretical approach known as 'surprisal analysis'. The results from this analysis showed that cells were close to a steady state all along the 48h of the experiment. In addition, calculation of free energy of cellular metabolites showed that the transition point, i.e. the state which immediately precedes cell division, corresponds to the most unstable stage of the cell cycle and that division is identified as the greatest drop in the free energy of metabolites.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Metabolomics , Algal Proteins/analysis , Amino Acids/analysis , Biomass , Cell Division , Chlamydomonas reinhardtii/growth & development , Chlorophyll/analysis , Circadian Rhythm , Fatty Acids/analysis
5.
Proc Natl Acad Sci U S A ; 111(36): 13235-40, 2014 Sep 09.
Article in English | MEDLINE | ID: mdl-25157127

ABSTRACT

The epithelial-to-mesenchymal transition (EMT) initiates the invasive and metastatic behavior of many epithelial cancers. Mechanisms underlying EMT are not fully known. Surprisal analysis of mRNA time course data from lung and pancreatic cancer cells stimulated to undergo TGF-ß1-induced EMT identifies two phenotypes. Examination of the time course for these phenotypes reveals that EMT reprogramming is a multistep process characterized by initiation, maturation, and stabilization stages that correlate with changes in cell metabolism. Surprisal analysis characterizes the free energy time course of the expression levels throughout the transition in terms of two state variables. The landscape of the free energy changes during the EMT for the lung cancer cells shows a stable intermediate state. Existing data suggest this is the previously proposed maturation stage. Using a single-cell ATP assay, we demonstrate that the TGF-ß1-induced EMT for lung cancer cells, particularly during the maturation stage, coincides with a metabolic shift resulting in increased cytosolic ATP levels. Surprisal analysis also characterizes the absolute expression levels of the mRNAs and thereby examines the homeostasis of the transcription system during EMT.


Subject(s)
Epithelial-Mesenchymal Transition , Neoplasms/pathology , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Cytosol/metabolism , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Ontology , Humans , Neoplasms/genetics , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thermodynamics , Time Factors , Transforming Growth Factor beta1/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...